CSC 341 - Fall 2023
Languages

\[A_{TM} = \{ \langle M, \omega \rangle \mid \omega \in L(M) \} \]

\(A_{TM} \) is in \(RE \) but not \(co-RE \).

\[HALT_{TM} = \{ \langle M, \omega \rangle \mid M(\omega) \text{ halts} \} \]

\(HALT_{TM} \) is in \(RE \) but not \(co-RE \).

\[STEP_{TM} = \{ \langle M, \omega, i \rangle \mid M(\omega) \text{ halts within } i \text{ steps} \} \]

\(STEP_{TM} \) is in both \(RE \) and \(co-RE \) and thus is also in \(DEC \).

\[UHALT_{TM} = \{ \langle M \rangle \mid M \text{ halts on every input} \} \]

\(UHALT_{TM} \) is in neither \(RE \) nor \(co-RE \).

\[E_{TM} = \{ \langle M, \omega \rangle \mid L(M) = \emptyset \} \]

\(E_{TM} \) is in \(co-RE \) but not \(RE \).

\[ALL_{TM} = \{ \langle M, \omega \rangle \mid L(M) = \Sigma^* \} \]

\(ALL_{TM} \) is in neither \(RE \) nor \(co-RE \).

\[EQ_{TM} = \{ \langle A, B \rangle \mid L(A) = L(B) \} \]

\(EQ_{TM} \) is in neither \(RE \) nor \(co-RE \).
SS_{TM} = \{ \langle A, B \rangle \mid L(A) \subseteq L(B) \}

SS_{TM} is in neither RE nor co-RE.

FIN = \{ \langle M \rangle \mid |L(M)| < \infty \}

FIN is in neither RE nor co-RE.

INFIN = \{ \langle M \rangle \mid |L(M)| = \infty \}

INFIN is in neither RE nor co-RE.

BB = \{ \langle M \rangle \mid M \text{ is a busy beaver} \}

BB is in neither RE nor co-RE.

Recall that a domino is a $[x \ y]$ where x and y are strings. Given a collection of domino types (and an infinite number of each), match is an arrangement of dominoes so that the top string is the same as the bottom string. For example, given the dominoes $[a \ aba]$ and $[baa \ a]$, we have the match $[a \ aba] \ [baa \ a]$.

PCP = \{ \langle P \rangle \mid P \text{ is a collection of dominoes with a match} \}

PCP is in RE but not co-RE.

REGULAR = \{ \langle M \rangle \mid L(M) \text{ is regular} \}

REGULAR is in neither RE nor co-RE.

A_{DFA} = \{ \langle D, \omega \rangle \mid D \text{ is a DFA and } \omega \in L(D) \}

A_{DFA} is in both RE and co-RE and thus is also in DEC.

E_{DFA} = \{ \langle D \rangle \mid D \text{ is a DFA and } L(D) = \emptyset \}
E_{DFA} is in both RE and $co-RE$ and thus is also in DEC.

$ALL_{DFA} = \{\langle D \rangle \mid D \text{ is a DFA and } L(D) = \Sigma^*\}$

ALL_{DFA} is in both RE and $co-RE$ and thus is also in DEC.

$EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$

EQ_{DFA} is in both RE and $co-RE$ and thus is also in DEC.

$AL_{LBA} = \{\langle M, \omega \rangle \mid M \text{ is an LBA and } \omega \in L(M)\}$

AL_{LBA} is in both RE and $co-RE$ and thus is also in DEC.

$EL_{LBA} = \{\langle M, \omega \rangle \mid M \text{ is an LBA and } L(M) = \emptyset\}$

EL_{LBA} is in $co-RE$ but not RE.

$ALL_{LBA} = \{\langle M, \omega \rangle \mid M \text{ is an LBA and } L(M) = \Sigma^*\}$

ALL_{LBA} is in $co-RE$ but not RE.

3