Problem 1. Given a string $\omega \in \Sigma^*$ and a symbol $a \in \Sigma$, define $\#(\omega, a)$ to be the number of a’s in ω.

Prove that the following language is not regular.

$$S = \{ \omega \in \{0, 1\}^* \mid \#(\omega, 0) \geq \#(\omega, 1) \}$$

Problem 2. Draw an ordinary Turing machine that recognizes S from the previous problem.

Problem 3. Recall that $A \leq_T B$ if A is decidable when given an oracle for B.

Show that $FIN \leq_T INFIN$.

Problem 4. Recall that a computable function $f : \Sigma^* \to \Sigma^*$ is one for which there is a Turing machine M such that on all inputs $\omega \in \Sigma^*$, $M(\omega)$ halts with just $f(\omega)$ on its tape.

Show that the following function f is uncomputable.

$$f(\langle M \rangle) = \begin{cases} |L(M)| & L(M) < \infty \\ \epsilon & L(M) = \infty \end{cases}$$

Problem 5. For both of the following languages, prove they are undecidable using Rice’s Theorem or show that Rice’s Theorem does not apply. You may assume that $\Sigma = \{0, 1\}$ for each problem.

a) $B = \{ \langle M \rangle \mid M$ is a TM and $101 \in L(M) \}$

b) $C = \{ \langle M \rangle \mid M$ is a TM, $L(M) = 0^*$, and M visits at most 3 distinct states $\}$

Problem 6. Prove that $A_{TM} \not\leq_m E_{TM}$.

Problem 7. Show that if $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$.

Problem 8. Consider the following language.

$$EVEN_{TM} = \{ \langle M \rangle \mid M$ is a TM and $L(M)$ contains no odd length strings $\}$$

Prove that $EVEN_{TM} \not\in RE$ via a mapping reduction.

Problem 9. Show that $EVEN_{TM} \in co–RE$.

Problem 10. Prove that A_{TM} is $RE–COMPLETE$.