Problem 1. Prove using a finite automaton definition of regularity that if a language L is regular, then its complement \overline{L} is regular.

Solution 1. Let L be regular. Then there is a DFA $D = (Q, \Sigma, \delta, q_0, F)$ such that $L(D) = L$.

Construct a new DFA $\overline{D} = (Q, \Sigma, \delta, q_0, \overline{F})$. Then if $\omega \in L(D)$, by definition, this means $\delta^*(q_0, \omega) \in F$. In other words, $\delta^*(q_0, \omega) \notin \overline{F}$, so $\omega \notin L(\overline{D})$. Moreover, if $\omega \notin L(D)$, by definition, $\delta^*(q_0, \omega) \notin F$. Thus $\delta^*(q_0, \omega) \in \overline{F}$, so $\omega \in L(\overline{D})$.

But then $\omega \in L(D) \iff \omega \notin L(\overline{D})$, so $L(\overline{D}) = \overline{L}$. Thus \overline{L} is regular. \hfill \square

Problem 2. Prove using the Myhill-Nerode Theorem that if a language L is regular, then \overline{L} is regular.

Solution 2. Let L be regular. Then by Myhill-Nerode, there is a finite number of equivalence classes of \equiv_L. But then those equivalence classes must be the same equivalence classes for $\equiv_{\overline{L}}$. Thus $\equiv_{\overline{L}}$ has a finite number of equivalence classes, so \overline{L} must also be regular. \hfill \square

Problem 3. Prove or disprove using the Pumping Lemma or the Myhill-Nerode Theorem that the following language is regular.

Solution 3. We will use the Pumping Lemma to show A is not regular. First, assume that A is regular. Then by the Pumping Lemma, there is a pumping length $p > 0$ for A.

Pick $\omega = 0^p$. Let $x = 0^i$, $y = 0^b$ and $z = 0^{p-a-b}$. Then the Pumping Lemma, it follows that for every $i \geq 0$, $0^{p+a(i-1)} \in A$. In other words, for each such i, $p + a(i - 1)$ is prime. This is clearly not the case since the difference between primes is not bounded by a. As such, there must eventually be an i such that $p + a(i - 1)$ is not prime.

Thus A is not regular. \hfill \square

Problem 4. Prove or disprove using the Pumping Lemma or the Myhill-Nerode Theorem that the following language is regular.

Solution 4. We prove via the Myhill-Nerode theorem that A is irregular.

Consider the string $x_i = 0^i$ for some $i \geq 1$. If we pick $i' > i$ then $x_{i'} \notin A$. To see why, consider the string $y_i = 1^i$. Clearly, $x_iy_i \notin A$ but $x_{i'}y_i \in A$, so y_i is a distinguishing extension of x_i and $x_{i'}$, thus x_i and $x_{i'}$ lie in distinct equivalence classes. Since i and i' were arbitrary, there are an infinite number of equivalence classes with respect to \equiv_A, hence A is irregular. \hfill \square
Problem 5. Prove or disprove using the Pumping Lemma or the Myhill-Nerode Theorem that the following language is regular.

\[C = \{ \omega \in \Sigma^* \mid |\omega| \equiv 0 \pmod{777} \} \]

You may assume that \(\Sigma = \{0, 1\} \).

Solution 5. We will use the Myhill-Nerode Theorem to show that \(C \) is regular. In this case, there are 777 equivalence classes, but it suffices to show that there are at most this many equivalence classes.

Let \([\omega_i] \) for \(0 \leq i < 777 \) denote the set of all strings \(\omega \) satisfying \(|\omega| \equiv i \pmod{777} \).

Then for any \(i \), pick \(x, y \in [\omega_i] \). Let \(z \) be any extension string. Then \(xz \in C \) if and only if \(|xz| \equiv 0 \pmod{777} \). But \(|x| = |y| \), so this is true if and only if \(|yz| \equiv 0 \pmod{777} \). That in turn is true if and only if \(yz \in C \). Hence \(x \equiv_C y \).

Since \(i \) was arbitrary, this is true of each of these sets. This means that \(\equiv_C \) has at most 777 equivalence classes, thus \(\equiv_C \) has at most a finite number of equivalence classes. Therefore \(C \) is regular.